

Addressing Assumptions & Misconceptions About Living Shorelines

2016 Delaware Wetland Conference

Douglas Janiec
Natural Resources Program Manager
& Senior Restoration Ecologist
Sovereign Consulting Inc.

REPRESENTED LIVING SHORELINE & ENERGY ATTENUATION THROUGHOUT THE NORTHEAST (2014 - 2015)

- D. Janiec. 2015. Natural Resilience and Living Shorelines: What are they and how do they work? 2015 Emergency Preparedness and Hazmat Response Conference, King of Prussia, **PA**. Workshop. October 23, 2015.
- D. Janiec. 2015. Shoreline Restoration and Natural Shoreline Resilience Using Standard and Hybrid Energy Attenuating Living Shorelines. Maryland-District of Columbia Utilities Association, 2015 Environmental Conference, Cambridge, **MD**. October 22, 2015.
- D. Janiec. 2015. Lessons Learned with Energy Attenuating Hybrid Living Shorelines. **New Jersey** Living Shoreline Workshop. June 10, 2015.
- D. Janiec. 2015. Restoration Project Management, Pit-falls and Lessons Learned. Presented to the Joint Base McGuire- Dix-Lakehurst (MDL), **NJ.** March 18, 2015.
- D. Janiec. 2015. Introduction to Sovereign & Technical Talk on Natural Shoreline Restoration and Resilience. Presented to the USFWS, Chesapeake Marshlands NWR Complex, **MD**. March 4, 2015.
- D. Janiec. 2015. A Talk on Waves, Wave Attenuation & Hybrid Living Shorelines. The State of **Delaware** Living Shoreline Training Workshop. February 26, 2015.
- D. Janiec. 2015. Energy Attenuation & Hybrid Living Shorelines: A Viable Tool for Coastal Resilience. Hot Topic Session, Delaware Estuary Science & Environmental Summit "Balancing Progress & Protection 10 Years of Science in Action." January 28, 2015.
- D. Janiec. 2015. Panel Discussion. Monitoring Standards for Tidal Wetland Enhancement Projects. Special Session, Delaware Estuary Science & Environmental Summit "Balancing Progress & Protection 10 Years of Science in Action." January 28, 2015.
- D. Janiec. 2015. Living Shoreline Treatments, Tactics, & Techniques in the Delaware Region. Restoration I Session, Delaware Estuary Science & Environmental Summit "Balancing Progress & Protection 10 Years of Science in Action." January 27, 2015.
- D. Janiec. 2014. Inland Bays, Highlighted Topic No. 1: Management of Sediments for Improved Estuary Water Quality. Speaker on behalf of the Delaware Center for the Inland Bays, A Tale of Three Estuaries Conference, 4th Annual DEAWRA Symposium & 53 Annual WRA-DRB Conference, **DE**. November 12, 2014.
- D. Janiec. 2014. Wave Energy Attenuation. Guest Speaker at: Water Resources Association of the Delaware River Basin, Annual Board Meeting and Award Dinner. **PA** April 16, 2014.
- D. Janiec. 2014. Wave Attenuation Devices: A Linchpin to Maximized Coastal Resiliency and Ecological Function. Keynote Speaker at: Hampton Beach Coastal Erosion Control Workshop, **NH**. Know H20W. April 10, 2014.
- D. Janiec. 2014. Wave Attenuation Devices: A Linchpin to Maximized Coastal Resiliency and Ecological Function. Keynote Speaker at: Cape Cod Coastal Erosion Control Workshop, **MA**. Know H20W. April 9, 2014.
- D. Janiec. 2014. Wave Attenuation Devices: A Linchpin to Maximized Coastal Resiliency and Ecological Function. Keynote Speaker at: **Rhode Island** Coastal Erosion Control Workshop, Know H20W. April 8, 2014.
- D. Janiec and W. Young. 2014. Hybrid Living Shorelines: A Systematic Approach to Maximized Coastal Resiliency and Ecology. Plenary Speaker at: Society of Ecological Restoration (SER) Mid-Atlantic Conference. March 21, 2014, **PA.**

Addressing Assumptions & Misconceptions About Living Shorelines

2016 Delaware Wetland Conference

Douglas Janiec
Natural Resources Program Manager
& Senior Restoration Ecologist
Sovereign Consulting Inc.

Addressing Assumptions & Misconceptions
About Living Shorelines

REOCCURRING ASSUMPTIONS & PRECONCEPTIONS ABOUT LIVING SHORELINES = MYTHS OR FACT

How/why do these occur?

- Ignorance
- Competition
- Perspective
- Monkey See Monkey Do

- Monster Issue
- Living Shorelines
 need to be looked
 at relative to how
 they functionally
 interact with
 wave energy.

- Breakwaters provide a linear barrier to redirect (manipulate) concentrated wave energy.
- New hybrid attenuating living shoreline allows the wave to pass through the structure(s) as it attenuates (breaks up) the wave energies and creates a destructive wave environment.

- Erosion Patterns
 (not accretion patterns).
- Although some attenuation occurs, much of the remaining energy is concentrated.

In simplest terms, a wave energy attenuation design:

- 1) Takes focused energy (waves) and breaks it up into many smaller units
- 2) Creates a destructive wave environment so that wave energies become out of phase.

The net result is vastly reduced wave energy impacts and typically the creation of accretion zones.

QUICK POINT ABOUT ALL LIVING SHORELINES BEING THE SAME

#2 – LIVING SHORELINES CAN'T WORK IN HIGH ENERGY SYSTEMS

- Conventional Living Shorelines cannot handle high energy systems.
- But when we talk about hybrids, ...well let's see.

#2 – LIVING SHORELINES CAN'T WORK IN HIGH ENERGY SYSTEMS

#2 – LIVING SHORELINES CAN'T WORK IN HIGH ENERGY SYSTEMS

Cape Charles, VA

Cape Charles, VA

- WAD Deployment occurred just before Hurricane Sandy hit.
- Year 1 monitoring results.

Thank you LSS, Inc., Dade City, FL & Mid Atlantic Environmental LLC, Virginia Beach, VA for sharing photos

#2 – HYBRID LIVING SHORELINES CAN'T WORK IN HIGH ENERGY SYSTEMS

#3 – LIVING SHORELINES COST MORE THAN TRADITIONAL STRUCTURAL APPROACHES

Center for Coastal	Conventional	Hybrids (structural)
Resources Management - VIMS	\$ 50 - \$100	\$150 - \$ 500
Chesapeake Bay Foundation	\$ 50 - \$100	\$150 - \$1,200
Partnership for the DE Est. (Brochure)	\$100 - \$225	\$250 - \$1,000
PDE Brochure	Breakwaters/Bulkheads	\$450 - \$1,500

Wave Energy Based Ranges	Low	Moderate	High
	\$50 - \$2 50	\$175 - \$600	\$350 - \$1,000

Example Comparison

(Per 500 linear feet, 5 feet high)	WAD Array	Breakwater
	Units 10 ft W x 5 ft H, 1.5 ft spacing, 2x row	5 ft H, 5 ft Crest, 2.5:1 slope F, 2.5:1 slope B
Cost per linear foot, installed*:	1 0,	\$550 to \$800 (\$670)

#3 – LIVING SHORELINES COST MORE THAN TRADITIONAL STRUCTURAL APPROACHES

Other considerations:	Hybrids	Traditionals	
Maintenance Costs			
• Access			
 Geographic Location 			
• Equipment			
 Local Contractors 			
 Nourishment/Accretion 			

#3 – LIVING SHORELINES COST MORE THAN TRADITIONAL STRUCTURAL APPROACHES

QUICK POINT ABOUT MONEY AND RESTORATION

#4 – THE ECOLOGICAL UPLIFT OF A HYBRID LS ISN'T ALL THAT DIFFERENT FROM TRADITIONAL APPROACHES

- Supports LS Projects in Moderate to High Energy Systems
- Sediment Conservation
- Cost Saving for Dune and Nourishment Projects
- Infrastructure Protection
- Resilience General and related to Climate change
- Reef Habitat
- Oyster Habitat
- Beach Stabilization for Horseshoe Crab
- Migratory Birds Habitat
- EFH Uplift
- Sea grass/SAV Restoration
- Improved Ecosystem Services

#4 – THE ECOLOGICAL UPLIFT OF A HYBRID LIVING SHORELINE IS SIMILAR TO TRADITIONAL APPROACHES

(Per 500 linear feet)	WAD Array	Breakwater
General Description	Units 10 ft W x 5 ft H, 1.5 ft spacing, 2x row	5 ft H, 5 ft Crest, 2.5:1 slope F, 2.5:1 slope B
Wave Mechanism	Attenuation	Diffraction/Refraction/ Reflection
SBC - Soft Bottom Coverage (ft²)	2,435	13,750
NHS - New Hard Surface Area (ft²)	49,098	14,850
SHS Index (SBC/NHS) (lower is better)	5.0%	92.6%
DDC - Dimensional Depth & Morphologic Character	5 feet, 3-D	0.75 feet, Planar

#4 – THE ECOLOGICAL UPLIFT OF A HYBRID LIVING SHORELINE IS SIMILAR TO TRADITIONAL APPROACHES

